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1 Introduction

In set-valued analysis, the notion of a derivative of a set-valued map has been formulated

in different ways and applied to set up the optimality conditions(see [1–11]) . By virtue of

the concept of contingent derivative for a set-valued map (see [2]), Corley [6] investigated

optimality conditions for set-valued optimization problems. But it turns out that nec-

essary and sufficient optimality conditions do not coincide under standard assumptions.

For solving this problem, Jahn and Rauh [7] introduced the contingent epiderivative of a

set-valued map and then obtained unified necessary and sufficient optimality conditions.

But, unfortunately, since the contingent epiderivative of a set-valued map is a single-

valued map, the conditions assuring the existence of the contingent epiderivative are hard

to be satisfied. To overcome the difficulty, Chen and Jahn [8] introduced a generalized

contingent epiderivative of a set-valued map, and established a unified necessary and suffi-

cient optimality condition for set-valued optimization problems in terms of the generalized

contingent epiderivative. Li and Chen [9] proposed higher-order generalized contingen-

t(adjacent) epiderivatives of set-valued maps, and then obtained higher-order Fritz John

type necessary and sufficient conditions for Henig efficient solutions to a constrained set-

valued optimization problem. Li et al. [10] studied some properties of higher-order tangent

sets and higher-order derivatives introduced in [2], and then obtained higher-order nec-

essary and sufficient optimality conditions for set-valued optimization problems under

cone-concavity assumptions. In [11], Li et al. introduced generalized second-order com-

posed contingent epiderivatives for set-valued maps and established a unified sufficient

and necessary optimality condition for set-valued optimization problems by employing

the generalized second-order composed contingent epiderivatives. In [12], using the con-

cept of the radial epiderivatives, Kasimbeyli obtained necessary and sufficient optimality

conditions for optimization problems without convexity conditions . By employing higher-

order upper radial set and higher-order upper radial derivative, Anh et al. [13] established

optimality conditions of weakly efficient solutions for set-valued optimization problems.

Wang et al. [14] proposed the higher-order weak radial epiderivative of a set-valued map,

and obtained the optimal- ity conditions for non-convex set-valued optimization problems

under the weakly efficiency. Zhang and Wang [15] introduced the second-order weakly

composed radial epiderivative of set- valued maps, and obtained the necessary optimality

conditions of Benson proper efficient solutions for the constrained set-valued optimization

problems without the assumptions of generalized cone-convexity. Peng et al. [16] provided
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the higher-order weak lower inner Studniarski epiderivative for set- valued maps, and ob-

tained KarushCKuhnCTucker necessary optimality conditions for Benson proper efficient

solutions of the constrained set-valued optimization problems.

Motivated by the work reported in [10–16], several new properties are obtained for

higher-order upper radial sets and higher-order upper radial derivatives introduced in [13],

and by virtue of the properties, a few optimality conditions are established for weak

efficient solutions of a set-valued optimization problem. some recent existing results are

derived from the obtained ones. In addition, one removes deficiencies contained in two

earlier results in [13].

The rest of the paper is organized as follows. In Section 2, we recall some basic

concepts. In Section 3, we obtain several properties of the higher-order upper radial sets

and higher-order upper radial derivatives. In Section 4, we establish optimality conditions

for weak efficient solutions of constrained set-valued optimization problems.

2 Preliminaries

Throughout this paper, if not otherwise specified, let X, Y and Z be three real normed

spaces, where the spaces Y and Z are partially ordered by nontrivial pointed closed convex

cones C ⊂ Y and D ⊂ Z with intC �= ∅ and intD �= ∅, respectively. one assumes that

0X , 0Y , 0Z denote the origins ofX, Y, Z, respectively, Y ∗ denotes the topological dual space

of Y and C∗ denotes the dual cone of C, defined by C∗ = {ϕ ∈ Y ∗|ϕ(y) ≥ 0, ∀y ∈ C}.
Let S be a nonempty subset of X, F : S → 2Y and G : S → 2Z be two given nonempty

set-valued maps. The graph of F is defined by grF = {(x, y) ∈ X × Y |x ∈ S, y ∈ F (x)}.
The profile map F+ : S → 2Y is defined by F+(x) = F (x) + C, for every x ∈ S.

Definition 2.1 [2] Let M be a nonempty subset in X, x̆ ∈ M We say that x̆ is a

C-weakly efficient point of M if

(M − {x̆}) ∩ (−intC) = ∅.

Definition 2.2 (See [17]) Let S ⊆ X be a nonempty subset and x0 ∈ clS. The closed

radial cone T r
S(x0) to S at x0 is the set of all v ∈ X for which there exist a sequence

{λn} of positive real numbers and a sequence {xn} in X with limn→∞ xn = v such that

x0 + λnxn ∈ S, for all n ∈ N , where N denotes the natural number set.
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Definition 2.3 (See [17]) Let S ⊆ X be a nonempty subset, F : S → Y be a set-valued

map and (x0, y0) ∈ grF . The radial derivative DrF (x0, y0) of F at (x0, y0) is a set-valued

map from X to Y defined by

y ∈ DrF (x0, y0)(x) if and only if (x, y) ∈ T r
grF (x0, , y0).

Definition 2.4 (See [13]) Let x ∈ S ⊆ X, F : S → 2Y , (x0, y0) ∈ grF and (u1, v1), · · · ,
(um−1, vm−1) ∈ X × Y with m ≥ 1.

(i) The mth-order upper radial set of S with respect to u1, · · · , um−1 is defined as

T
r(m)
S (x, u1, · · · , um−1)

= {x ∈ X|∃tn > 0, ∃xn → x, ∀n, x0 + tnu1 + · · ·+ tm−1
n um−1 + tmn xn ∈ S}.

(ii) The mth-order upper radial derivative of F at (x0, y0) with respect to (u1, v1), · · · ,
(um−1, vm−1) is the set-valued map D

(m)
R F (x0, y0, u1, v1, · · · , um−1, vm−1) : X → 2Y

whose graph is

grD
(m)
R F (x0, y0, u1, v1, · · · , um−1, vm−1) = T

r(m)
grF (x0, y0, u1, v1, · · · , um−1, vm−1).

From the definition, one knows that the following results hold.

Proposition 2.1 Let x ∈ S ⊆ X, F : S → 2Y and (x0, y0) ∈ grF . Then

(i) T
r(m)
S (x, 0X , · · · , 0X) = T r

S(x);

(ii) Dm
RF (x0, y0, 0X , 0Y , · · · , 0X , 0Y ) = DrF (x0, y0).

Proposition 2.2 (see [13, Proposition3.4]) Let S = domF and (x0, y0) ∈ grF . Then,

for all x ∈ S,

(i) F (x)− {y0} ⊆ DrF (x0, y0)(x− x0);

(ii) F (x)− {y0} ⊆ T r
F (S)(y0).

Take x = x0 in Proposition 2.2, one obtains the following results.

Corollary 2.1 Let S = domF and (x0, y0) ∈ grF . Then

4
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(i) 0Y ∈ DrF (x0, y0)(0X);

(ii) 0Y ∈ T r
F (S)(y0).

In this paper, consider the following set-valued vector optimization problem:

(P )




min F (x),

s.t. x ∈ S,G(x)
⋂
(−D) �= ∅.

The point (x0, y0) ∈ grF is said to be a weakly efficient solution of problem (P) if

(F (A)− {y0}) ∩ (−intD) = ∅,

where A :=∈ {x ∈ S|G(x)
⋂
(−D) �= ∅}.

For other notations and definitions, one refers to Ref. [13].

3 Properties of Higher-Order Upper Radial Sets and

Upper Radial Derivatives

Proposition 3.1 Let x ∈ S ⊆ X, F : S → 2Y , (x0, y0) ∈ grF and ui = 0X ∈ X, vi ∈
−C, i = 1, · · · ,m− 1. Then

T
r(m)
F+(S)(y0, v1, · · · , vm−1) ⊂ T r

F+(S)(y0), (1)

and

Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(x) ⊂ DrF+(x0, y0)(x), ∀x ∈ X. (2)

Proof. We first prove that (1) holds.

Let y ∈ T
r(m)
F+(S)(y0, v1, · · · , vm−1). Then there exist sequences tn > 0, xn ∈ S and

yn ∈ F (xn) + C such that

yn − y0 − tnv1 − · · · − tm−1
n vm−1

tmn
→ y. (3)

Since yn ∈ F (xn) + C, vi ∈ −C, i = 1, · · · ,m − 1 and tn > 0, yn := yn − tnv1 − · · · −
tm−1
n vm−1 ∈ F (xn) + C. Combined with (16), we can conclude that

yn − y0
tmn

→ y,
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which implies y ∈ T r
F+(S)(y0). Thus (1) holds.

we next prove that (2) holds. Let x ∈ X. Let us consider two possible cases for

Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(x).

Case 1: Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(x) = ∅. (2) holds trivially.

Case 2: Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(x) �= ∅. Let y ∈ Dm

RF+(x0, y0, u1, v1, · · · ,
um−1, vm−1)(x). Then there exist sequences tn > 0, xn ∈ S and yn ∈ F (xn) +C such that

(xn, yn)− (x0, y0)− tn(u1, v1)− · · · − tm−1
n (um−1, vm−1)

tmn
→ (x, y). (4)

Set xn := xn − tnu1 − · · · − tm−1
n um−1. Since yn ∈ F (xn) + C, ui = 0X , vi ∈ −C, i =

1, · · · ,m− 1 and tn > 0,

yn := yn − tnv1 − · · · − tm−1
n vm−1 ∈ F (x̄n) + C.

Combined with (4), we can conclude that

(xn, yn)− (x0, y0)

tmn
→ (x, y),

which implies y ∈ DrF+(x0, y0)(x). Thus (2) holds and the proof is complete. �

By Proposition 3.1 and [13, Remark 3.2(iv)], we have the following result.

Corollary 3.1 Let x ∈ S ⊆ X, F : S → 2Y , (x0, y0) ∈ grF and ui ∈ X, vi ∈ −C, i =

1, · · · ,m− 1. Then

Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(X) ⊂ T r

F+(S)(y0).

Proposition 3.2 Let x ∈ S ⊆ X, F : S → 2Y , (x0, y0) ∈ grF and ui = 0X , vi ∈ C, i =

1, · · · ,m− 1. Then

F (S)− {y0} ⊂ T
r(m)
F+(S)(y0, v1, · · · , vm−1),

F (x)− {y0} ⊂ Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0).

Proof. Let x ∈ S and y ∈ F (x). Take xn = x, yn = y + v1 + v2 + · · ·+ vm−1 and tn = 1.

Since vi ∈ C, i = 1, · · · ,m − 1, yn ∈ F (xn) + C. Thus, it follows from the definitions of

mth-order upper radial sets that

(xn, yn)− (x0, y0)− tn(u1, v1)− · · · − tm−1
n (um−1, vm−1)

tmn
= (x− x0, y − y0)

6
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∈ T
r(m)
grF+

(x0, y0, u1, v1, · · · , um−1, vm−1),

which implies

y − y0 ∈ T
r(m)
F+(S)(y0, v1, · · · , vm−1),

y − y0 ∈ Dm
RF+(x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0).

So F (S) − {y0} ⊂ T
r(m)
F+(S)(y0, v1, · · · , vm−1) and F (x) − {y0} ⊂ Dm

RF+(x0, y0, u1, v1, · · · ,
um−1, vm−1)(x− x0). The proof is complete. �

4 Optimality Conditions

In this section, we present optimality conditions for weakly efficient solutions of set-valued

optimization problems. In addition, we remove deficiencies contained in two earlier results

in [13].

Theorem 4.1 Let (x0, y0) ∈ grF and z0 ∈ G(x0)
⋂
(−D). If (x0, y0) is a weakly efficient

pair of (P), then, the following separations holds

T r
(F,G)+(S)(y0, z0)

⋂
−int(C ×D) = ∅, (5)

and

Dr(F,G)+(x0, y0, z0)(X)
⋂

−int(C ×D) = ∅. (6)

Proof. By Proposition 2.1 and [13, Remark 3.2(iv)], we can easily derive (6) from (5).

Therefore, we need to prove only that (5) holds. Suppose that (5) does not hold. Then,

there exists (y, z) ∈ Y × Z such that

(y, z) ∈ T r
(F,G)+(S)(y0, z0) (7)

and

(y, z) ∈ −int(C ×D). (8)

It follows from (7) and the definition of first-order upper radial sets that there exist

sequences tn > 0, xn ∈ S and (yn, zn) ∈ (F,G)(xn) + C ×D such that

(yn, zn)− (y0, z0)

tn
→ (y, z). (9)

7
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From (8),(9) and z0 ∈ −D, there exists large enough natural number N such that

yn − y0 ∈ −intC, zn ∈ −intD, ∀n > N. (10)

Since zn ∈ G(xn) + D, there exist zn ∈ G(xn) and dn ∈ D such that zn = zn + dn. It

follows from (10) that zn ∈ G(xn)
⋂
(−D), ∀n > N, which implies xn ∈ A, for any n > N .

Since yn ∈ F (xn) + C, there exist yn ∈ F (xn) and cn ∈ C such that yn = yn + cn. It

follows from (10) that

yn − y0 ∈ (F (xn)− {y0})
⋂
(−intC) ⊂ (F (A)− {y0})

⋂
(−intC), ∀n > N,

which contradicts that (x0, y0) be a weakly efficient pair of (P). So (5) holds and the proof

is complete. �

Remark 4.1 By Proposition 3.1 and Corollary 3.1, we can easily derive [13, Theorem

4.1] from Theorem 4.1.

Corollary 4.1 (see [13, Theorem 4.1]) Let (x0, y0) ∈ grF be a weakly efficient pair of

(P), z0 ∈ G(x0)
⋂
(−D), (ui, vi, wi) ∈ X × (−C) × (−D), i = 1, 2, · · · ,m − 1. Then, the

following separations holds

T
r(m)
(F,G)+(S)((y0, z0), (v1, w1), · · · , (vm−1, wm−1))

⋂
−int(C ×D) = ∅

and

Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(X)

⋂
−int(C ×D) = ∅.

Theorem 4.2 Let (x0, y0) ∈ grF , z0 ∈ G(x0)
⋂
(−D), (ui, vi, wi) ∈ {0X} × C × D, i =

1, 2, · · · ,m− 1. If one of the following separations holds

(i)

T
r(m)
(F,G)+(S)((y0, z0), (v1, w1), · · · , (vm−1, wm−1))

⋂
−(intC ×D(z0)) = ∅, (11)

(ii) Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x− x0)

⋂
−(intC ×D(z0)) = ∅, x ∈ A, (12)

then (x0, y0) is a weakly efficient pair of (P).

8
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Proof. We need to prove only that (i) holds. It follows from Proposition 3.2 that

(F,G)(x)− {(y0, z0)} ⊂ T
r(m)
(F,G)+(S)((y0, z0), (v1, w1), · · · , (vm−1, wm−1)), ∀x ∈ A.

Thus, by (11), we have

[(F,G)(x)− {(y0, z0)}]
⋂

−(intC ×D(z0)) = ∅, ∀x ∈ A. (13)

Suppose that there exist x ∈ A and y ∈ F (x) such that y − y0 ∈ −intC. Then there

exists z ∈ G(x)
⋂
(−D) such that z − z0 ∈ −D(z0), and hence

(y, z)− (y0, z0) ∈ −(intC ×D(z0)),

which contradicts (13). So (x0, y0) is a weakly efficient pair of (P) and the proof is

complete. �

Corollary 4.2 Let (x0, y0) ∈ grF and z0 ∈ G(x0)
⋂
(−D). If one of the following

separations holds

(i) T r
(F,G)+(S)((y0, z0))

⋂−(intC ×D(z0)) = ∅,

(ii) Dr(F,G)+(x0, y0, z0)(x− x0)
⋂−(intC ×D(z0)) = ∅, x ∈ A,

then (x0, y0) is a weakly efficient pair of (P).

Remark 4.2 (i)Since [13, (8)] need be satisfied for any vector group (ui, vi, wi) ∈ X ×
(−C)×(−D), i = 1, 2, · · · ,m−1, and equalities (11) and (12) need be satisfied for a vector

group (ui, vi, wi) ∈ {0X}×C×D, i = 1, 2, · · · ,m−1, Theorem 4.2 improves [13, Theorem

4.4].

(ii) Take G(x) ≡ Z. Then [12, Theorem 4.4] can be obtained from Corollary 4.2 and

Theorem 4.1.

(iii) By Corollary 4.2 and the proof of [13, Theorem 4.4], [13, Theorem 4.4] can be derived

from Theorem 4.2.

Corollary 4.3 (see [13, Theorem 4.4]) Let (x0, y0) ∈ grF . Suppose that there exists

z0 ∈ G(x0)
⋂
(−D) such that, for (ui, vi, wi) ∈ X × (−C)× (−D), i = 1, 2, · · · ,m− 1, and

x in the feasible set A, one of the following separations holds

(i) T
r(m)
(F,G)+(S)((y0, z0), (v1, w1), · · · , (vm−1, wm−1))

⋂−(intC ×D(z0)) = ∅,

9
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(ii) Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x−x0)

⋂−(intC×D(z0)) = ∅.

Then, (x0, y0) is a weakly efficient pair of (P).

By employing mth-order upper radial set and mth-order upper radial derivative, Anh

et al.(see [13]) established the following sufficient optimality conditions of weakly efficient

solutions for (P ):

Theorem A (see [13, Theorem 4.5]) Let the assumptions of [13, Theorem 4.4] be satisfied.

Then, (x0, y0) is a weakly efficient pair of (P) if one of the following conditions holds.

(i) For all (y, z) ∈ T
r(m)
(F,G)+

(A)((y0, z0), (v1, w1), · · · , (vm−1, wm−1)), there exists (c∗, d∗) ∈
C∗ ×D∗ \ {0, 0} such that 〈d∗, z0〉 = 0 and

〈c∗, y〉+ 〈d∗, z〉 > 0. (14)

(ii) For all x ∈ A and all (y, z) ∈ Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x−

x0), there exists (c∗, d∗) ∈ C∗ ×D∗ \ {0, 0} such that 〈d∗, z0〉 = 0 and

〈c∗, y〉+ 〈d∗, z〉 > 0. (15)

Theorem B (see [13, Theorem 4.6]) For problem (P), (x0, y0) ∈ grF , z0 ∈ G(x0)
⋂
(−D).

Let (e, k) ∈ int(C × D). Then, (x0, y0) is a weakly efficient pair of (P) if one of the

following conditions holds.

(i) There exists (Γ, L) ⊂ C∗ ×D∗ \ {(0, 0)} such that

C = {y ∈ Y |〈f, y〉 ≥ 0, for any f ∈ Γ}, D = {z ∈ Z|〈g, z〉 ≥ 0, for any g ∈ L},

sup
(f,g)∈(Γ,L)

{〈f, 0Y 〉+ 〈g,−z0〉
〈f, e〉+ 〈g, k〉

} = 0, (16)

and

sup
(f,g)∈(Γ,L))

{〈f, y〉+ 〈g, z〉
〈f, e〉+ 〈g, k〉

} > 0 (17)

for any (y, z) ∈ T
r(m)
(F,G)+(A)((y0, z0), (v1, w1), · · · , (vm−1, wm−1)).

(ii) (16) and (17) satisfy for all (y, z) ∈ Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1,

wm−1)(x− x0) for each x ∈ A.

10
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Unfortunately, [13, Theorems 4.5 and 4.6] exist gaps. On the one hand, from the proofs

of [13, Theorems 4.4 and 4.6], it is possible that ui = 0Y and vi = 0Z , i = 1, 2, · · · ,m− 1

in [13, Theorems 4.5 and 4.6], and then, the assumptions of [13, Theorems 4.5 and

4.6] should be satified for the case. In fact, by Propposition 2.1 and Corollary 2.1, for

any (x, y) ∈ grF, z ∈ G(x), one obtains (0Y , 0Z) ∈ T
r(m)
(F,G)+(A)(y, z, 0Y , 0Z , · · · , 0Y , 0Z) =

T r
(F,G)+(A)(y, z) and (0Y , 0Z) ∈ Dm

R (F,G)+(x, y, z, 0X , 0Y , 0Z , · · · , 0X , 0Y , 0Z)(0X). There-
fore, for any (Γ, L) ⊂ (C∗×D∗)\ (0Y ∗ , 0Z∗), the conditions (14), (15) and (17) never hold.

On the other hand, the condition (16) can be simply written as

z0 = 0Z . (18)

Indeed, (18)⇒ (16) is obvious. In what concerns the implication (16)⇒ (18), it follows

from z0 ∈ −D that g(−z0) ≥ 0, for all g ∈ L ⊂ D+. Thus, if (16) holds, then for all

(f, g) ∈ Γ× L, we have

0 ≤ 〈f, 0Y 〉+ 〈g,−z0〉
〈f, e〉+ 〈g, k〉

≤ sup
(f ′,g′)∈Γ×L

{〈f
′, 0Y 〉+ 〈g′,−z0〉
〈f ′, e〉+ 〈g′, k〉

} = 0,

which implies g(−z0) = 0, for all g ∈ L. This means that −z0, z0 ∈ {x ∈ Z|g(x) ≥ 0, ∀g ∈
L} = D. Since D is pointed, one concludes that z0 = 0Z .

We next give Theorems 4.3 and 4.4 which are appropriate modifications for deficiencies

contained in [13, Theorems 4.5 and 4.6].

Theorem 4.3 Let the assumptions of [13, Theorem 4.4] be satisfied. Then, (x0, y0) is a

weakly efficient pair of (P) if one of the following conditions holds.

(i) For any (y, z) ∈ (T
r(m)
(F,G)+

(A)((y0, z0), (v1, w1), · · · , (vm−1, wm−1)) \ {(0Y , 0Z)}, there ex-
ists (c∗, d∗) ∈ C∗ ×D∗ \ {(0Y ∗ , 0Z∗)} such that 〈d∗, z0〉 = 0 and 〈c∗, y〉+ 〈d∗, z〉 > 0.

(ii) For each x ∈ A and all (y, z) ∈ Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1, wm−1)(x−

x0) with (y, z) �= (0Y , 0Z), there exists (c∗, d∗) ∈ C∗ × D∗ \ {(0Y ∗ , 0Z∗)} such that

〈d∗, z0〉 = 0 and 〈c∗, y〉+ 〈d∗, z〉 > 0.

Theorem 4.4 Let (x0, y0) ∈ grF , z0 ∈ G(x0)
⋂
(−D) and (e, k) ∈ int(C × D). Then,

(x0, y0) is a weakly efficient pair of (P) if one of the following conditions holds.

(i) z0 = 0Z and there exists (Γ, L) ⊂ (C∗ × D∗) \ {(0Y ∗ , 0Z∗)} such that C = {y ∈
Y |〈f, y〉 ≥ 0, for any f ∈ Γ}, D = {z ∈ Z|〈g, z〉 ≥ 0, for any g ∈ L},

sup
(f,g)∈(Γ,L))

{〈f, y〉+ 〈g, z〉
〈f, e〉+ 〈g, k〉

} > 0, (19)
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for any (y, z) ∈ T
r(m)
(F,G)+(A)((y0, z0), (v1, w1), · · · , (vm−1, wm−1)) \ {(0Y , 0Z)}.

(ii) z0 = 0Z and (19) satisfy for all (y, z) ∈ Dm
R (F,G)+(x0, y0, z0, u1, v1, w1, · · · , um−1, vm−1,

wm−1)(x− x0) \ {(0Y , 0Z)}, for each x ∈ A.
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